.-'

= Rt [1nr

usenix .
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

POLARDB Meets Computational Storage:
Efficiently Support Analytical Workloads

in Cloud-Native Relational Database

Wei Cao, Alibaba; Yang Liu, ScaleFlux; Zhushi Cheng, Alibaba;
Ning Zheng, ScaleFlux; Wei Li and Wenjie Wu, Alibaba;
Lingiang Ouyang, ScaleFlux; Peng Wang and Yijing Wang, Alibaba;
Ray Kuan, ScaleFlux; Zhenjun Liu and Feng Zhu, Alibaba; Tong Zhang, ScaleFlux

https://www.usenix.org/conference/fast20/presentation/cao-wei

This paper is included in the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST '20)
February 25-27, 2020 « Santa Clara, CA, USA
978-1-939133-12-0

Open access to the Proceedings of the
18th USENIX Conference on File and
Storage Technologies (FAST '20)

is sponsored by

+

POLARDB Meets Computational Storage: Efficiently Support Analytical
Workloads in Cloud-Native Relational Database

Wei Cao®, Yang Liu*, Zhushi Cheng®, Ning Zheng*, Wei Li*, Wenjie Wu', Lingiang Ouyang*,
Peng Wang', Yijing Wang®, Ray Kuan*, Zhenjun Liu®, Feng Zhu', Tong Zhang*
T Alibaba Group, Hang Zhou, Zhejiang, China
¥ ScaleFlux Inc., San Jose, CA, USA

Abstract

This paper reports the deployment of computational storage
drives in Alibaba Cloud to enable cloud-native relational
database cost-effectively support analytical workloads. With
its compute-storage decoupled architecture, cloud-native re-
lational database should pushdown data-intensive tasks (e.g.,
table scan) from front-end database nodes to back-end storage
nodes in order to adequately support analytical workloads.
This however makes it a challenge to maintain the cost ef-
fectiveness of storage nodes. The emerging computational
storage opens a new opportunity to address this challenge: By
replacing commodity SSDs with computational storage drives,
storage nodes can leverage the in-storage computing power
to much more efficiently perform table scans. Practical imple-
mentation of this simple idea is non-trivial and demands cohe-
sive innovations across the software (i.e., database, filesystem
and I/O) and hardware (i.e., computational storage drive) lay-
ers. This paper presents such a holistic implementation for
Alibaba cloud-native relational database POLARDB. To the
best of our knowledge, this is the first real-world deployment
of cloud-native databases with computational storage drives
ever reported in the open literature.

1 Introduction

Relational database is an essential building block in mod-
ern information technology infrastructure. Therefore, all the
cloud vendors have invested significant efforts to grow their
relational database service (RDS) business. Not surprisingly,
some cloud vendors have developed their own cloud-native
relational database systems, e.g., Amazon Aurora [28] and
Alibaba POLARDB [9]. In order to achieve sufficient scala-
bility and fault resilience, cloud-native relational databases
naturally follow the design principle of decoupling compute
from data storage [4,17]. Meanwhile, they typically aim to be
compatible with mainstream open-source relational databases
(e.g., MySQL and PostgreSQL) and achieve high performance
for OLTP (online transaction processing) workloads at a much
lower cost than their on-premise counterparts.

It is highly desirable for cloud-native relational databases
to adequately support analytical workloads. As pointed out by
the authors of [28], because cloud-native relational databases
decouple compute from data storage, the network band-
width between database nodes and storage nodes becomes a
scarce resource. This however does not match well to ana-
lytical workloads that involve intensive data access. To best
serve OLTP workloads, cloud-native relational databases typ-
ically employ the row-store model (or the hybrid-row/column
model [5]). This could make the network bandwidth an even
bigger bottleneck for analytical workloads. In order to bet-
ter serve analytical workloads, the almost only viable option
is to off-load data-access-intensive tasks (in particular table
scan) from database nodes to storage nodes. This concept is
certainly not new and has been adopted by both proprietary
database appliances (e.g., Oracle Exadata) and open-source
databases (e.g., MySQL NDB Cluster). In spite of the simple
concept, its practical implementation in the context of cloud-
native databases is particularly non-trivial. On one hand, each
storage node must be equipped with sufficient data process-
ing power to handle table scan tasks. On the other hand, to
maintain the cost effectiveness of cloud-native databases, we
cannot significantly (or even modestly) increase the cost of
storage nodes. By complementing CPUs with special-purpose
hardware (e.g., GPU and FPGA), heterogeneous computing
architecture appears to be an appealing option to address this
data processing power vs. cost dilemma.

This work applies heterogeneous computing in POLARDB
storage nodes to efficiently support table scan pushdown. The
key idea is simple: Each POLARDB storage node off-loads
and distributes table scan tasks from its CPU to its data stor-
age devices. Under this framework, each data storage device
becomes a computational storage drive [1] that can carry
out table scan on the I/O path. Compared with off-loading
table scan to a dedicated stand-alone computing device (e.g.,
FPGA/GPU-based PCle card), distributing table scan across
all the storage drives can minimize the data traffic across the
storage/memory hierarchy and obviate data processing hot-
spot. This simple concept is not new and has been discussed

USENIX Association

18th USENIX Conference on File and Storage Technologies 29

(e.g., see [11, 14]). However, its practically viable implemen-
tation and real-world deployment remain completely missing,
at least in the open literature. This is mainly due to the dif-
ficulty of addressing two challenges: (1) how to practically
support the table scan pushdown across the entire software
hierarchy, and (2) how to implement low-cost computational
storage drives with sufficient table scan processing capability.
Over the course of materializing this simple idea in the
context of POLARDB on Alibaba Cloud, we developed a
set of software/hardware techniques to cohesively address
the two challenges. To reduce the product development cy-
cle and meanwhile ensure cost effectiveness, computational
storage drives use an FPGA-centric host-managed architec-
ture. Inside each computational storage drive, a single mid-
range low-cost Xilinx FPGA chip handles both flash mem-
ory control and table scan. With highly optimized software
and hardware design, each computational storage drive can
support high-throughput (i.e., over 2GB/s) table scan on com-
pressed data and meanwhile achieve storage I/O performance
comparable to leading-edge NVMe SSDs. We developed a
variety of techniques that enable POLARDB storage nodes
fully exploit the capability of computational storage drives.
This paper presents these design techniques and elaborates
on their implementation, and further presents evaluation re-
sults to demonstrate their effectiveness. Based on the TPC-H
queries, we extracted six individual table scan tasks and ran
these scan tasks on one storage node. Such node-level evalua-
tion shows that the computational storage drives can largely
reduce both scan latency and CPU utilization of the storage
node. We further carried out system-level evaluations on a PO-
LARDB cloud instance over 7 database nodes and 3 storage
nodes. Results show that this solution can noticeably reduce
the TPC-H query latency. To the best of our knowledge, this
is the first application of emerging computational storage in
production database ever reported in the open literature.

2 Background and Motivation

2.1 POLARDB: Basic Architecture

POLARDB is a new cloud-native OLTP database designed
by Alibaba Cloud. Its design goals come from our cloud cus-
tomers’ real needs: large per-instance storage capacity (tens
of TB), high TPS (transactions per second), high and scalable
QoS and high availability. POLARDB provides enterprise-
level cloud database services and is compatible with MySQL
and PostgreSQL. Fig. 1 illustrates the compute-storage decou-
pled architecture of Alibaba POLARDB. Database computing
nodes and storage nodes are connected through high-speed
RDMA network. In each POLARDB instance, there is only
one read/write database node that handles both the read and
write requests, and the other database nodes handle only read
requests. All the nodes in an instance, including read/write
nodes and read-only nodes, are able to access the same copy

of data on a storage node. To ensure the high availability, PO-
LARDB uses the Parallel-Raft protocol to write three copies
of data across the storage nodes [9].

Application Application Application
Cloud Server Cloud Server Cloud Server
t Read/Write Splitter
_amam, With Load Balancing
2
0>
Write l Failover Read 1 Read

DB Server
(Replica)

DB Server
(Primary)

DB Server
(Replica)

User Space Scale
File System Out/In

User Space
File System

User Space
File System

Data Router
& Cache

Data Router
& Cache

Data Router
& Cache

R/W gkead Only

Read Only

Data Chunk
=== Server

m:e

Parallel-Raft Protocol & Storage Serverless

Figure 1: Illustration of POLARDB architecture.

2.2 POLARDB: Table Scan Pushdown

Off-loading table scan from database nodes to storage nodes
is important for cloud-native relational database to effectively
handle analytical workloads. This concept trades heavier data
processing load on storage nodes for significantly reduced
network traffic between database nodes and storage nodes.
Moreover, since POLARDB employs the row-store model
to better serve OLTP workloads, the column-oriented nature
of table scan tends to demand even higher data processing
power in storage nodes. Therefore, the key design issue is how
to cost-effectively equip storage nodes with sufficient data
processing power to handle the additional table scan tasks.

The most straightforward option is to simply scale up each
storage node, which nevertheless is not practically desirable
mainly due to the cost overhead. Table scan over row-store
data does not fit well to modern CPU architecture and tends
to largely under-utilize CPU hardware resources (e.g., cache
memory, and SIMD processing resource) [2]. As a result, we
have to more aggressively scale up the storage nodes to com-
pensate for the inefficiency of CPU-based implementation.
Hence, this straightforward option is economically unappeal-
ing and even unacceptable, especially as the classical CMOS
technology scaling is quickly approaching its end [8].

An alternative is to complement storage node CPUs with
special-purpose hardware (e.g., FPGA or GPU) that can carry
out table scan with much better cost effectiveness. Under

30 18th USENIX Conference on File and Storage Technologies

USENIX Association

this heterogeneous computing framework, the conventional
practice uses a centralized heterogeneous architecture where
the special-purpose hardware is implemented in the form of a
single stand-alone FPGA/GPU-based PCle card (e.g., see [24,
26,29]). Nevertheless, this approach has several drawbacks
for our targeted systems: (1) High data traffic: All the raw data
in their row-store format must be fetched from the storage
devices into the FPGA/GPU-based PCle card. Due to the
data-intensive nature of table scan, this leads to a very heavy
data traffic over the PCIe/DRAM channels. The high data
traffic can cause significant energy consumption overhead
and inter-workload interference. (2) Data processing hot-spot:
Each storage node contains a large number of NVMe SSDs,
each of which can achieve multi-GB/s data read throughput.
As aresult, analytical processing workloads could trigger very
high aggregated raw data access throughput that is far beyond
the I/O bandwidth of one PCle card. This could make the
FPGA/GPU-based PCle card become the system bottleneck.
The above discussion suggests that a distributed heteroge-
neous architecture is a better option. As illustrated in Fig. 2,
by distributing table scans directly into each storage drive,
we can eliminate the high data traffic over the PCle/DRAM
channels, and obviate data processing hot-spot in the system.
This intuition directly motivated us to develop and deploy
computational storage drives in POLARDB storage nodes.

2.3 Computational Storage Drive

Loosely speaking, any data storage device that can carry out
data processing tasks beyond its core storage duty can be
called a computational storage drive. The simple concept
of empowering storage devices with additional computing
capability can trace back to over 20 years ago [3,21,22].
Computational storage complements with CPU to form a het-
erogeneous computing system. Compared with its CPU-only
counterpart, a heterogeneous computing system not surpris-
ingly can achieve higher performance and/or energy efficiency
for many applications, as demonstrated by prior research (e.g.,
see [10,11,15,16,18,23,27]). However, it is apparently subject
to two cost overheads: (1) the hardware cost of implementing
computational storage drives, and (2) the development cost on
developing all the necessary hardware and software solutions
to enable its real-world deployment. In spite of the over two
decades of research, computational storage has not yet entered
the mainstream market, arguably because of the absence of a
practically justifiable benefit vs. cost trade-off.

To overcome the cost barrier, we chose an FPGA-based
host-managed computational storage drive design strategy.
This can reduce the development cost from two aspects: (1)
We use a single FPGA to realize both flash memory control
and computation (i.e., table scan in this work) inside compu-
tational storage drives. Compared with ASIC-based approach,
the circuit-level programmability of FPGA can significantly
reduce the computational storage drive development cycle and

CPU & DRAM

T S E— ‘]\\, High data
A)
Centralized

' ,,,,,,,,,,,,,,,, f ,,,,,,,,, > traffic
Flash control Flash control ;] /" computing
4 . 4 Table Scan !

Accelerator Compute
NAND Flash NAND Flash (FPGA/GPU) hot-spot

(a) Centralized heterogeneous computing architecture

CPU & DRAM
I [I [I BN
- \, Low data
PCle Root Complex & Switch 7 traffic
f """"""""""""""" == Distributed
Flashcontrol” ||~ || Flash control [/ |]” Flashcontrol-1L /" computing
"R tablesscan-+-----i- & table scan -+~ &tablescan | !

No compute

NAND Flash NAND Flash NAND Flash hot-spot

(b) Distributed heterogeneous computing architecture

Figure 2: Illustration of (a) centralized heterogeneous comput-
ing architecture, and (b) distributed heterogeneous computing
architecture.

cost. (2) The computational storage drive is fully managed by
the host for the functions such as address mapping, request
scheduling, and garbage collection. Its host-management na-
ture can facilitate integrating computational storage drive into
existing software stack. It enables a high flexibility to devise
and optimize the computational storage drive’s API through
which applications can utilize its configurable computation
capability. Meanwhile, the host-managed computational stor-
age drive natively integrates into the Linux I/O stack as a
storage block device to serve normal I/O requests.

However, in return for its circuit-level programmability,
FPGA is expensive (e.g., modern high-end FPGA chip could
cost few thousand dollars), leading to a higher hardware cost
of computational storage drive. Meanwhile, the objective of
this work is to deploy computational storage drive to cost-
effectively support table scan pushdown. Therefore, one key
issue is how to minimize the hardware cost overhead while
achieving sufficiently high storage I/O and table scan process-
ing performance, which will be discussed in the next section.

3 Design and Implementation

As pointed out above, although applying computational stor-
age to support table scan pushdown is a very simple concept
and has been well discussed in the open literature, its real-
world implementation and deployment has remained missing.
Our first-hand experience of implementing this concept for
POLARDRB reveals that transferring this simple idea into real
product faces the following two major challenges:

USENIX Association

18th USENIX Conference on File and Storage Technologies 31

1. Support table scan pushdown across the entire software
hierarchy: Table scan pushdown is initiated by the user-
space POLARDB storage engine that accesses data by
specifying the offsets in files, while table scan is physi-
cally served by computational storage drive that operates
as a raw block device and manages data with LBA (log-
ical block address). The entire storage I/O stack sits
in between POLARDB storage engine and computa-
tional storage drive. Hence, we have to cohesively en-
hance/modify the entire software/driver stack in order to
create a path in support of table scan pushdown.

2. Implement low-cost computational storage drive: As dis-
cussed above in Section 2.3, although the FPGA-based
design approach can significantly reduce the develop-
ment cost, FPGA tends to be expensive. Moreover, since
FPGA typically operates at only 200~300MHz (in con-
trast to 2~4GHz CPU clock frequency), we have to em-
ploy a large degree of circuit-level implementation paral-
lelism (hence more silicon resource) in order to achieve
sufficiently high performance. Therefore, we must de-
velop solutions to enable the use of low-cost FPGA chip
in our implementation.

The remainder of this section presents a set of design tech-

niques across the software and hardware stacks that can ad-
dress the above two major challenges.

3.1 Support Table Scan Pushdown Across the
Entire Software Stack

To tackle the first challenge, we developed techniques to sup-
port the table scan pushdown across the entire software stack,
as illustrated in Fig. 3. POLARDB database nodes incorporate
a front-end analytical processing engine called POLARDB
MPP. Being compatible with the MySQL protocol, this an-
alytical processing engine can parse, optimize and rewrite
SQL using the AST (abstract syntax tree) and a number of
embedded optimization rules. It transforms each SQL query
into a DAG (directed acyclic graph) execution plan consist-
ing of operators and data flow topology. This analytical pro-
cessing engine natively supports table scan pushdown to the
underlying storage engine. Hence, we can keep the analytical
processing engine intact in this work.

As illustrated in Fig. 3, in order to enable table scan push-
down, we have to appropriately enhance the entire storage
stack underneath the analytical processing engine, including
POLARDB storage engine, PolarFS (a distributed filesystem
under POLARDB), and computational storage driver. In the
following, we will elaborate on the implemented enhance-
ments across these three layers.

3.1.1 Enhancement to POLARDB Storage Engine

POLARDB database storage engine follows the design prin-
ciple of LSM-tree (log-structured merge-tree) [20]. Data in

SELECT I_linestatus, sum(l_quantity)
SQL FROM lineitem
WHERE [_shipdate <= date “1998-09-04"

POLARDB MPP

Table Scan
Unchanged -
v
Enhanced e o
Schema (e.g., lineitem table: int,int,int,int,...)
POLARDB Predicate (e.g., col 11 <= date “1998-09-04")

Storage Engine Data blocks (block_offsets in data file)

Table scan request conversion

!

Data blocks (LBA on storage drive)
Table scan request conversion

]

Data blocks (PBA on flash memory)
Table scan request conversion, partition,

and scheduling
Computational

Computational
storage drive storage drive

PolarFS

Computational
Storage Driver

Figure 3: Illustration of the overall software stack.

each table are organized into many files (typical file size is
few tens of MBs), and each file contains a large number of
blocks (typical block size ranges from 4KB to 32KB). In its
original implementation, POLARDB storage engine serves
the table scan requests using the CPUs on storage nodes.
Hence, the underlying storage I/O stack is oblivious to the
table scan pushdown. Since this work aims to utilize computa-
tional storage drives to process table scan, we have enhanced
POLARDB storage engine so that it can pass table scan re-
quests to the underlying filesystem PolarFS. As illustrated in
Fig. 3, storage engine accesses data blocks in terms of offsets
in files. Each table scan request contains: (1) the location
(i.e., offsets in files) of the to-be-scanned data, (2) the schema
of the table onto which the table scan is applied, and (3) the
table scan conditions to be evaluated. Meanwhile, POLARDB
storage engine allocates a memory buffer for storing data re-
turned from computational storage drives, and each table scan
request contains the location of this memory buffer.

As discussed later, the implemented computational storage
drives do not support all the possible scan conditions (e.g.,
LIKFE is not supported in current implementation). Hence,
upon receiving table scan pushdown from the analytical pro-
cessing engine, the enhanced storage engine first analyzes
the scan conditions, and if necessary it extracts and passes a
subset of the scan conditions that can be served by the compu-
tational storage drives. After receiving the data returned from
the computational storage drives, the storage engine always
checks the data against the complete table scan conditions.
Moreover, to improve the overall system efficiency, we should

32 18th USENIX Conference on File and Storage Technologies

USENIX Association

exploit the computational parallelism across multiple compu-
tational storage drives within each storage node. Therefore,
POLARDB storage engine is able to issue multiple table scan
requests concurrently to the underlying computational storage
devices through PolarFS.

3.1.2 Enhancement to PolarFS

As described in [9], POLARDB is deployed on the distributed
filesystem PolarFS that manages the data storage across all
the storage nodes. Each computational storage drive can only
perform table scan on its own data and meanwhile data are
scanned in the unit of storage engine data blocks. Meanwhile,
due to the use of block-level compression, variable-length
compressed blocks are contiguously packed in each file (i.e.,
each compressed block is not 4KB-aligned). Therefore, Po-
larFS employs a coarse-grained data striping (4MB stripe
size) across the computational storage drives in order to en-
sure most data blocks entirely reside on one computational
storage drive. In the rare case of one compressed block locates
across two drives, the system will use storage node CPU to
handle the corresponding scan operation.

As discussed in Section 3.1.1, POLARDB storage engine
specifies the location of to-be-scanned data in the form of
offsets in files. The to-be-scanned data may span over mul-
tiple files and hence multiple computational storage drives.
Meanwhile, computational storage drives can only locate data
in the form of LBAs. Therefore, upon receiving each table
scan request from POLARDB storage engine, PolarFS must
appropriately convert this request before forwarding it to the
computational storage driver. Accordingly, we have enhanced
PolarFS from the following aspects: (1) Suppose the to-be-
scanned data span over m computational drives, the enhanced
PolarFS decomposes this request into m scan requests, each
of which scans the data on one computational storage drive.
(2) For each scan request, it converts the data location in-
formation into offsets in LBAs. As illustrated in Fig. 3, the
enhanced PolarFS subsequently passes the m scan requests
with converted LBA-based location information to the under-
lying computational storage driver.

3.1.3 Enhancement to Computational Storage Driver

As discussed above in Section 2.3, our computational storage
drive is fully managed by a host-side driver in the kernel
space. The driver exposes each computational storage drive
as a block device. Upon receiving each table scan request from
PolarFS§, the driver carries out the following operations. It first
analyzes the scan conditions, and if necessary re-arranges the
scan conditions in order to better streamline the hardware-
based scan processing and hence improve the throughput. For
example, suppose the table contains 16 fields (i.e., fi, f2, -+,
f16), and the scan condition involves two comparisons, where
the first one compares fjo and a constant, and the second

one compares f and fs. Since hardware can pipeline the
table record parsing, field selection, and comparison, if we
re-arrange the scan condition by interchanging the position of
the two comparisons, we can improve the hardware utilization
efficiency and hence achieve higher processing throughput.
The driver further converts the location information of the
to-be-scanned data from the LBA domain into the physical
block address (PBA) domain, where each PBA associates
with a fixed location in NAND flash memory.

Moreover, the driver internally partitions each scan request
into a number of (much) smaller scan sub-tasks, which can
serve for two purposes: (1) A large scan task may occupy the
flash memory bandwidth for a long time, which can cause
other normal I/O request suffer from a longer latency. This
problem can be mitigated by partitioning a large scan task
into small sub-tasks and cohesively scheduling them with
normal I/O requests. (2) By partitioning a large scan task
into small sub-tasks, it helps to reduce the hardware resource
usage for internal buffering and improve flash memory access
parallelism. Moreover, storage device background operations,
in particular garbage collection (GC), can severely interfere
with table scan and hence cause significant latency penalty.
Since all the flash management functions are handled by the
host-side driver, we enhanced the driver so that it can cohe-
sively schedule GC and table scan in order to minimize the
GC-induced interference. In particular, in the case of heavy
and bursty analytical processing workloads, the driver will
adaptively reduce or even suspend the GC operation.

3.2 Reduce Hardware Implementation Cost

In order to tackle the challenge of computational storage drive
implementation cost, the key is to maximize the FPGA hard-
ware resource utilization efficiency. To achieve this objective,
we further developed the following techniques across the soft-
ware and hardware layers.

3.2.1 Hardware-Friendly Data Block Format

We first modified POLARDB storage engine data block for-
mat in order to facilitate the FPGA implementation of table
scan. Table scan mainly involves various data comparison
operations (e.g., =, >, <). In spite of the FPGA circuit-level
programmability, it is difficult for FPGA to implement com-
parators that can efficiently support multiple different data
types. In this work, we modified POLARDB storage engine
so that it stores all the table data in the memory-comparable
format, i.e., data can be compared using the function mem-
cmp(). As a result, computational storage drives only need to
implement a single type of comparator that can carry out the
memcmp() function, regardless of the specific data types in
different fields of a table. By enabling the implementation of
type-oblivious comparators in FPGA, this can largely reduce
the usage of FPGA resources for implementing table scan.

USENIX Association

18th USENIX Conference on File and Storage Technologies 33

We further modified the storage engine data block struc-
ture in order to improve the hardware utilization efficiency.
Fig. 4(a) illustrates the data block format being used in the
original storage engine: One data block contains a number
of sorted table entries, and ends with meta information (i.e.,
1-byte data compression type and 4-byte CRC). Although
such a block format can be easily handled by CPUs, it is not
friendly to the hardware-based table scan in computational
storage drives. We modified the data block format as illus-
trated in Fig. 4(b), where we add an additional block header
including 1-byte block compression type, 4-byte number of
key-value pairs, and 4-byte number of restart keys (note that
restart key is used to facilitate key search in the presence
of prefix compression). This modified block format is much
more friendly to hardware-based table scan because: (1) Com-
putational storage drive can decompress each block and check
CRC without demanding POLARDB storage engine to pass
the size information of each block. (2) By adding the “# of
keys” and “# of restarts” fields at the beginning of each block,
the hardware can more conveniently handle the restarts within
each block and detect the end of each block. This is well suited
to the sequential data processing flow of the hardware, and
hence simplifies the FPGA-based hardware implementation.

Type: 1-byte
of keys: 4-byte
of restarts: 4-byte

Type: 1-byte Type: 1-byte

CRC: 4-byte

(a) (b)

CRC: 4-byte

Figure 4: (a) Block structure in conventional practice, and (b)
modified block structure to simplify hardware implementation
of data scan.

3.2.2 FPGA Implementation

Fig. 5 shows the parallel and pipelined architecture of our
FPGA implementation. To reduce the cost, we use a single
mid-range FPGA chip for both flash memory control and table
scan. The FPGA incorporates a powerful soft-decision LDPC
(low-density parity-check) coding engine. This enables the
use of low-cost 3D TLC (and QLC in the future) NAND flash
memory, which helps to reduce the overall computational
storage drive cost. We use a parallel and pipelined hardware
architecture to improve the table scan processing throughput.
As shown in Fig. 5, it contains two parallel data decompres-
sion engines and four data scan engines. Current implementa-

tion supports the Snappy decompression and following scan
conditions: =, #, >, >, <, <, NULL, and INULL.

Middle-range Xilinx KU15P 16nm FPGA

PCle

Gen3>§

(soft LDPC)

Figure 5: Parallel and pipelined FPGA implementation.

To further improve the hardware resource utilization effi-
ciency, we applied a simple design technique described as
follows. As pointed out above, all the fields are stored in the
memory-comparable form, hence we only need to implement
type-oblivious memcmp modules to evaluate each condition.
Since the number of scan conditions varies among different
table scan tasks, each scan engine employs a recursive archi-
tecture in order to maximize the FPGA resource utilization.
Each scan engine contains one memcmp module and one RE
(result evaluation) module. Let P =Y/, (H;fizl ci,j) denote
the overall scan task, where each c; ; is one individual condi-
tion on one field. The symbols } and [] represent the logic
OR and AND operation, respectively. Using a single memcmp
and RE module, we recursively evaluate the predicate with
one condition ¢; ; at a time. The RE module checks whether
the previous memcmp output (i.e., all the ¢; ;’s that have been
evaluated so far) is sufficient to determine the value of the
result P. Once the value of P (i.e., either 1 or 0) can be deter-
mined, the scan engine can immediately finish the evaluation
on current row, and start to work on another row. This recur-
sive architecture can handle any arbitrary predicate with the
optimal FPGA hardware resource utilization.

4 Evaluation

This section presents evaluation results to demonstrate the
effectiveness of this deployed solution. The remainder of
this section is organized as follows: Section 4.1 summa-
rizes the experimental environment and basic storage per-
formance of the computational storage drives. Section 4.2
evaluates and compares the table scan performance when
using CPUs or computational storage devices to realize ta-
ble scan. Section 4.3 presents the TPC-H evaluation results
on a POLARDB instance in Alibaba Cloud, and Section 4.4
provides further concluding remarks.

4.1 Experimental Setup

In order to become practically viable products, besides provid-
ing in-storage computing capability, computational storage
drives must have top-notch storage I/O performance (at least
comparable with leading-edge commodity NVMe SSDs). The

34 18th USENIX Conference on File and Storage Technologies

USENIX Association

storage performance of our computational storage drives is
summarized as follows. Each drive uses 64-layer 3D TLC
NAND flash memory chips. With PCIe Gen3 x4 interface,
each drive can sustain 2.2GB/s and 3.0GB/s sequential write
and read throughput. Under 100% address span and fully trig-
gered GC, each drive can achieve 160K and 590K random
4KB write and read IOPS, which are on par with the latest
enterprise-grade NVMe SSDs. Each computational storage
drive hosts a single mid-range Xilinx UltraScale+ KU15p
FPGA chip that handles both flash memory control and com-
putation. To maximize the error correction strength, each drive
supports soft-decision LDPC code decoding with beyond-
3GB/s decoding throughput. The performance evaluation is
carried out on a POLARDB instance (with seven database
nodes and three storage nodes) in Alibaba Cloud.

4.2 Table Scan Performance Evaluation

The FPGA inside each computational storage drive incorpo-
rates two Snappy decompression engines and four data scan
engines. The decompression throughput varies with the data
compressibility. Under compression ratio of 60% and 30%,
the two decompression engines total can achieve 2.3GB/s and
2.8GB/s decompression throughput, respectively. The data
scan engines also have variable throughput that depend on
several runtime parameters, e.g., the size of each row in the
table, table schema, and scan conditions.

We uses the LINEITEM table defined in TPC-H benchmark
as a test vehicle to evaluate the effectiveness of moving table
scan to computational storage drives. The LINEITEM table
contains total 16 columns mixed with data types of identifier,
integer, decimal, fixed-length and variable-length strings. To
cover a wide range of processing complexity, we chose the
following six table scan tasks (extracted from different TPC-H
queries) to carry out evaluations on one storage node:

TS-1: Select L_PARTKEY, L_EXTENDEDPRICE,
L_DISCOUNT
from LINEITEM
where L_SHIPDATE > “1994-06-01” and

L_SHIPDATE < “1994-07-01"

TS-2: Select L_PARTKEY, L_SUPPKEY, L_QUANTITY
from LINEITEM
where L_SHIPDATE > “1993-01-01” and
L_SHIPDATE < “1994-01-01”

TS-3: Select L_ORDERKEY, L_SUPPKEY,
L_EXTENDEDPRICE, L_DISCOUNT, L_SHIPDATE
from LINEITEM

where L_SHIPDATE > “1995-01-01" and
L_SHIPDATE < “1996-12-31”

TS-4: Select L_ORDERKEY, L_EXTENDEDPRICE,
L_DISCOUNT
from LINEITEM
where L_SHIPDATE < “1995-03-12”

TS-5: Select L_ORDERKEY

from LINEITEM

where L_COMMITDATE < L_RECEIPTDATE
TS-6: Select L_PARTKEY, L_SUPPKEY, L_QUANTITY

from LINEITEM

For the above six scan tasks, the data selectivity in terms
of table entries is 1.25%, 15.17%, 30.34%, 54.04%, 63.22%,
and 100.00%, respectively. We set the raw data compression
ratio as 0.5 when generating the LINEITEM table, and use the
Snappy compression library to compress each data block. For
each table scan task, we measured the scan latency and PCle
data traffic when turning on and off the table scan pushdown.
When we turn off the table scan pushdown, storage node treats
each computational storage drive as a normal SSD and relies
on CPU to carry out the table scan processing.

Fig. 6 shows the measured scan latency and CPU utilization,
where each data point is obtained by averaging the results of
10 independent runs. As discussed above, each computational
storage drive contains four hardware data scan engines. Hence,
the storage node runs the scan tasks under two hardware con-
figurations: (a) one computational storage drive with 4 CPU
threads, and (b) two computational storage drives with 8 CPU
threads. The notation CPU-based Scan and CSD-based Scan
correspond to the cases when storage nodes use its CPU and
computational storage drives to carry out table scan process-
ing, respectively. As shown in Fig. 6, under each hardware
configuration, we studied four cases: (1) CPU-based scan
without data compression, (2) CSD-based scan without data
compression, (3) CPU-based scan with Snappy compression,
and (4) CSD-based scan with Snappy compression.

The results clearly show that, compared with CPU-based
scan, its CSD-based counterpart can simultaneously reduce
the scan latency and CPU utilization. For example, when we
run the scan task TS-1 (with Snappy compression) on two
drives with 8 threads, CSD-based scan can reduce the latency
from 55s to 39s and meanwhile reduce the CPU utilization
from 514% to 140%. Compared with other scan tasks, TS-
6 can least benefit from CSD-based scan because its very
simple scan condition largely under-utilizes the hardware re-
source in computational storage drives. Even for TS-6 (with
Snappy compression), when using two drives with 8 threads,
CSD-based scan can reduce the latency from 65s to 53s and
meanwhile reduce the CPU utilization from 558% to 374%.
Fig. 6 also shows that, although the CPU utilization of CPU-
based scan remain relatively constant across all the six scan
tasks, the CPU utilization of CSD-based scan noticeably in-
creases as the data selectivity becomes larger. For example,
TS-1 (with the selectivity of 1.25%) and TS-2 (with the se-
lectivity of 15.17%) have less CPU utilization than others.
This can be explained as follows: In the case of CSD-based
scan, the CPU workload is proportional to the data selectivity.
The smaller the data selectivity is, the less amount of data are
transferred to and processed by the host CPU. In contrast, in
the case of CPU-based scan, regardless of the data selectivity,
host CPU has to fetch and process all the data from drives. The

USENIX Association

18th USENIX Conference on File and Storage Technologies 35

‘-CPU-based Scan (no compression) [l CSD-based Scan (no compression) [] CPU-based Scan (Snappy) [l CSD-based Scan (Snappy) ‘

N
o
o

-

o

o
T

Scan Latency (second)
o
o

o

TS TS-2 TS-3 TS-4 TS-5 TS-6
(b) Two computational storage drives & 8 threads

o]
o

[o2]
o
T

N
o
T

Scan Latency (second)
ey
o

o

TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

(a) One computational storage drive & 4 threads

00%

200%

100%

CPU Utilization

0%
TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

600%

400%

200%

CPU Utilization

0%

TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

Figure 6: Measured scan latency and CPU utilization when the storage node runs the scan tasks on (a) one computational storage
drive with 4 CPU threads, and (b) two computational storage drives with 8 CPU threads.

results also show that the effectiveness of CSD-based scan
can readily scale with the number of computational storage
drives. Finally, the results reveal that light-weight compres-
sion (i.e., Snappy in this study) can noticeably improve the
performance of CPU-based scan at the cost of CPU utiliza-
tion. In comparison, CSD-based scan is relatively insensitive
to the use of compression.

To further reveal the benefit of using computational storage
table scan pushdown to reduce data movement across the
storage and memory hierarchy, Fig. 7(a) shows the measured
volume of data being transferred from computational storage
drives to host DRAM, and Fig. 7(b) shows the measured total
host memory data transfer volume. The results show that

Il CPU-based Scan (no compression) [[] CPU-based Scan (Snappy)
I CSD-based Scan (no compression) Il CSD-based Scan (Snappy)

(a)

IS
o
T

W
o
T

o
T

PCle Data Traffic (GB)
n
o

o

TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

o
o

o
<]
T

o
=]

Memory Data Traffic (GB)

o

TS-1 TS-2 TS-3 TS-4 TS-5 TS-6

Figure 7: (a) PCle data traffic and (b) memory data traffic
inside the storage node.

CSD-based scan can significantly reduce the data transfer

volume across the storage and memory hierarchy. The benefit
improves as the data selectivity becomes smaller. For example,
in the case of scan task TS-1 (with the selectivity of 1.25%) ,
CSD-based scan can almost eliminate the PCle data transfer
traffic, and reduce the host memory data traffic by 5x (without
compression) and 3x (with compression). The results also
show that compression can very effectively reduce data traffic
volume across the storage and memory hierarchy.

4.3 System-level Evaluation

We further ran TPC-H analytical workload benchmark on a
POLARDB cloud instance with 32 SQL-engine containers
distributed on 7 database nodes and 3 back-end storage nodes.
Each storage node hosts 12 computational storage drives,
and each drive has a capacity of 3.7TB. We considered the
following three different scenarios:

1. No pushdown: In this baseline scenario, database nodes
do not push the table scan down to storage nodes. As
a result, storage nodes have to transfer all the data to
database nodes for table scan.

2. CPU-based pushdown: We enable the table scan push-
down from database nodes to storage nodes, and the
CPUs on the storage nodes are responsible for carrying
out table scan.

3. CSD-based pushdown: We enable the table scan push-
down from database nodes to storage nodes, and the
computational storage drives on the storage nodes are
responsible for carrying out table scan.

For each one out of the total 22 TPC-H queries, we mea-
sured the POLARDB performance by splitting data into parti-
tions and submitting n scan requests in parallel to the back-
end storage cluster. In this study, we considered three different

36 18th USENIX Conference on File and Storage Technologies

USENIX Association

I No Pushdown (no compression) [CICSD-based Pushdown (no compression) [CPU-based Pushdown (Snappy)
I CPU-based Pushdown (no compression) [l No Pushdown (Snappy) [csD-based Pushdown (Shappy)
200 | i | i) i \ \ \ \ I
:g 100 —
o
o
o Ll]
E 0 s I I I I A I I] I [l
H Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Qi1
400 - I I I I I I I I I I I]
a
2
5
S
O 200 -
0
Q2 Q13 Q4 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
Figure 8: Measured TPC-H query latency under 32 parallel requests.
I No Pushdown (no compression) []CSD-based Pushdown (no compression) [l CPU-based Pushdown (Snappy)
I CPU-based Pushdown (no compression) [l No Pushdown (Snappy) []CSD-based Pushdown (Snappy)
150 T T | T T T T T T T |
100 =
T
5
S 50 R
@
L
> 0
g 200 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
2 I I I I I I I I I \ |
4
ol
S
& 100 .
0
Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
Figure 9: Measured TPC-H query latency under 64 parallel requests.
I No Pushdown (no compression) []CSD-based Pushdown (no compression) [CPU-based Pushdown (Snappy)
I CPU-based Pushdown (no compression) [l No Pushdown (Snappy) [1CSD-based Pushdown (Snappy)
100 T T T T T T T T T T T
B 50 —
S
o
* b
= N Kolee ADnMin Alin HOROR Buchie HNcMia MACHAD M ke
8
100
el
&
&
50
0

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Figure 10: Measured TPC-H query latency under 128 parallel requests.

USENIX Association 18th USENIX Conference on File and Storage Technologies 37

PCle Data Traffic (GB)

Network Traffic (GB)

—_
()
o

100
80
60
40
20

(@)

[[
(| Il CPU-based Pushdown (no compression)
| | CSD-based Pushdown (no compression)
[1CPU-based Pushdown (Snappy)
I CSD-based Pushdown (Snappy)

Q1

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

(b)

T T T T T T T T T
I No Pushdown (no compression)
I Pushdown (no compression)
[1No Pushdown (Snappy)

I Pushdown (Snappy)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q@8

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Figure 11: (a) PCle data traffic inside storage nodes and (b) network data traffic in the POLARDB cluster.

values of n: 32, 64, and 128. Fig. 8, Fig. 9, and Fig. 10 show
the measured latency of all the 22 TPC-H queries under 32, 64,
and 128 parallel requests, respectively. Each evaluation point
is obtained by averaging the results of 5 independent runs.
The results clearly show the significant benefit of migrating
table scan operations from database nodes to storage nodes,
which can be intuitively justified given the compute-storage
decoupled architecture of POLARDB. The results show that,
as the number of requests increases, CSD-based pushdown
on average can more noticeably outperform CPU-based push-
down in terms of scan latency. For example, in the case of 32
parallel requests (with Snappy compression), when switching
from CPU-based pushdown to CSD-based pushdown, only
4 queries experience more than 30% latency reduction. In
contrast, in the case of 128 parallel requests (with Snappy
compression), when switching from CPU-based pushdown to
CSD-based pushdown, 11 queries experience more than 30%
latency reduction, where the maximum latency reduction is
50% for Q7. This is because, as the number of parallel re-
quests increases, storage nodes will have more parallel table
scan tasks to better utilize the hardware resource in the com-
putational storage drives. Moreover, the results show that the
benefit of CSD-based pushdown tends to improve when table
data are compressed by Snappy. This can be explained as fol-
lows: When table data are compressed, CPU-based pushdown
will consume more CPU resource in order to handle both data
decompression and query processing. Hence a larger num-
ber of parallel requests will more likely make CPU-based
pushdown CPU-bound. In contrast, CSD-based pushdown
can readily leverage the hardware decompression engines in
computational storage drives.

The results also show that CPU-based pushdown may even
slightly outperform CSD-based pushdown in few cases under
32 or 64 requests (e.g., Q10 with 32 requests). This is most
likely caused by the sub-optimal behavior of table scan push-
down scheduling, which leads to significant under-utilization
of the hardware resource in the computational storage drives.
Our future work will focus on improving the quality of ta-
ble scan pushdown scheduling in order to avoid significant
hardware resource under-utilization. Finally, Fig. 11 shows
the measured total volume of PCle data traffic inside stor-
age nodes and total volume of network data traffic between
database nodes and storage nodes. When switching from CPU-
based pushdown to CSD-based pushdown, 7 TPC-H queries
(with Snappy compression) experience more than 50% reduc-
tion on the PCle data traffic volume, where the maximum
PCle data traffic volume reduction is 97% for Q6 followed by
94% for Q14. By moving table scan from database nodes to
storage nodes, 12 TPC-H queries (with Snappy compression)
experience more than 70% reduction on the total network
data traffic volume. The above results clearly demonstrate the
significant reduction in data traffic and scan latency of table
scan pushdown in cloud-native database.

4.4 Summary

In-storage computing is a very simple concept and has been
well discussed in the research community. Nevertheless, its
practical implementation and deployment in real systems has
remained elusive. Meanwhile, it is not uncommon that signif-
icant gain at the component level does not translate to notice-
able benefit at the system level. Hence, commercializing the

38 18th USENIX Conference on File and Storage Technologies

USENIX Association

simple idea of in-storage computing goes far beyond imple-
menting a storage device that can do certain computation, and
demands cohesive innovations across software and hardware
hierarchy. Targeting at bringing in-storage table scan to cloud-
native database systems, we have developed holistic solutions
across the storage engine, filesystem, driver, and hardware
stack. The component-level evaluation results in Section 4.2
show that our implemented computational storage drive can
achieve high-throughput in-storage table scan, leading to sig-
nificant reduction on host CPU usage and storage-to-memory
data movement. The system-level evaluation results in Sec-
tion 4.3 show that our holistic solution indeed can carry the
component-level gain to the system level. The system-level
evaluation also confirms the critical importance of realizing
table scan pushdown from database nodes to storage nodes.

5 Related Work

Prior work has well studied the promise of accelerating
databases using special-purpose hardware (in particular
FPGA and GPU) to complement with CPUs. Many prior
efforts focused on off-loading the table scan in analytical
processing to dedicated accelerators (typically in the form of
PCle cards) built with either FPGA [24,26,29] or GPU [7,25].
Beyond table scan, prior work also investigated the poten-
tial of off-loading more complicated query processing ker-
nels [12, 19, 30]. Nevertheless, in spite of extensive prior
efforts and impressive performance benefits being demon-
strated over the years, IBM/Netezza [24] appears to be the
only known commercially successful product on mainstream
markets. It off-loads data compression and table scan into
dedicated FPGA-based PCle cards in IBM PureData Systems.
Beyond using stand-alone accelerators to complement CPUs,
Oracle even integrated special-purpose analytics acceleration
units into its own SPARC CPU [6], which however appar-
ently suffers from a very high development cost and has been
discontinued by Oracle.

The emerging computational storage enables new oppor-
tunities to implement heterogeneous computing platforms
for databases. The authors of [13] studied the design of
computational storage drives that support key-value store.
Prior work [11, 14] focused on leveraging computational stor-
age drives to realize in-storage table scan. Although prior
work [11, 14] share the same basic concept as this work,
there are several distinct differences: (1) This work presents
a holistic system solution in the context of cloud-native re-
lational database, and demonstrates its effectiveness in real
production environment. In comparison, prior work [11] ran
synthetic queries inside one computational storage drive with-
out integration with databases and system I/O stack. Prior
work [14] implemented a prototype based on a modified
MySQL running on a single server. It did not consider the
integration with a database system with compute-storage de-
coupled architecture, and did not consider the use of multiple

computational storage drives in one server. (2) The basic stor-
age 1/0 performance metrics (i.e., sequential throughput and
IOPS) of the computational storage drives being used in prior
work are much worse than that of leading-edge commodity
NVMe SSDs. As a result, the systems in prior work tend
to be much more I/O-bound and hence more easily benefit
from in-storage table scan. The benefits shown in prior work
may largely diminish when being compared with systems
that deploy leading-edge commodity NVMe SSDs. (3) Both
prior work [11, 14] use embedded processors within SSD
controllers to carry out the data processing, which however
cannot match the multi-GB/s intra-SSD NAND flash memory
access bandwidth and hence cannot achieve high-throughput
predicate evaluation. (4) Data compression is widely used in
databases to reduce the storage bit cost. As a result, compu-
tational storage drives must carry out data decompression in
order to support predicate evaluation on the data read path.
However, prior work [11, 14] did not consider the implemen-
tation of data decompression.

6 Conclusions

This paper reports a cohesive cross-software/hardware im-
plementation that enabled Alibaba cloud-native relational
database POLARDB to effectively support analytical work-
loads. The basic design concept is to dispatch the costly table
scan operations in analytical processing from CPU into com-
putational storage drives. Being well aligned with current
industrial trend towards heterogeneous computing, the key
idea is very simple and can trace back to over two decades
ago. Nevertheless, it is non-trivial to practically materialize
this simple idea with justifiable benefit vs. cost trade-off in the
real world. Under the framework of Alibaba POLARDB, this
work developed a set of design solutions across the entire soft-
ware and hardware stacks to practically implement this simple
idea in production cloud database environment. Experimen-
tal results on a POLARDB cloud instance over 7 database
nodes and 3 storage nodes show that our implementation can
achieve more than 30% latency reduction for 12 out of the
total 22 TPC-H queries. Meanwhile, our implementation can
reduce more than 50% storage-to-memory data movement
volume for 12 TPC-H queries. It is our hope that this work
will inspire much more research and development efforts to
investigate how future cloud infrastructure can leverage the
emerging computational storage drives.

References

[1] SNIA Technical Work Group on Computational Storage.
https://www.snia.org/computational.

[2] D.J. Abadi, S. R. Madden, and N. Hachem. Column-
stores vs. Row-stores: How different are they really? In

USENIX Association

18th USENIX Conference on File and Storage Technologies 39

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Proceedings of the International Conference on Man-
agement of Data (SIGMOD), pages 967-980, 2008.

A. Acharya, M. Uysal, and J. Saltz. Active disks: Pro-
gramming model, algorithms and evaluation. In Proc. of
the International Conference on Architectural Support
for Programming Languages and Operating Systems

(ASPLOS), pages 81-91, 1998.

M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
pages 159-174, 2007.

A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page
layouts for relational databases on deep memory hierar-
chies. The VLDB Journal, 11(3):198-215, Nov. 2002.

K. Aingaran, S. Jairath, and D. Lutz. Software in silicon
in the Oracle SPARC M7 processor. In IEEE Hot Chips
Symposium (HCS), pages 1-31, 2016.

P. Bakkum and K. Skadron. Accelerating SQL database
operations on a GPU with CUDA. In Proceedings of the
Workshop on General-Purpose Computation on Graph-
ics Processing Units, pages 94—-103, 2010.

M. T. Bohr and I. A. Young. CMOS scaling trends and
beyond. IEEE Micro, 37(6):20-29, November 2017.

W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng,
Y. Wang, and G. Ma. PolarFS: An ultra-low latency and
failure resilient distributed file system for shared storage
cloud database. Proc. VLDB Endow., 11(12):1849-1862,
Aug. 2018.

S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger.
Active disk meets flash: A case for intelligent SSDs. In
Proc. of the International ACM Conference on Super-
computing, pages 91-102, 2013.

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J.
DeWitt. Query processing on smart SSDs: Opportuni-
ties and challenges. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data
(SIGMOD), pages 1221-1230, 2013.

R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J.
Tsotras. FPGA-based multithreading for in-memory
hash joins. In Proc. of Conference on Innovative Data
Systems Research (CIDR), 2015.

Z. Istvan, D. Sidler, and G. Alonso. Caribou: Intelligent
distributed storage. Proc. VLDB Endow., 10(11):1202—
1213, Aug. 2017.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

I.Jo,D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D.D. G.
Lee, and J. Jeong. YourSQL: A high-performance
database system leveraging in-storage computing. Proc.
VLDB Endow., 9(12):924-935, Aug. 2016.

S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King,
S. Xu, and Arvind. BlueDBM: An appliance for big
data analytics. In Proc. of the International Symposium
on Computer Architecture (ISCA), pages 1-13, 2015.

Y. Kang, Y.-S. Kee, E. Miller, and C. Park. Enabling
cost-effective data processing with smart SSD. In Proc.
of IEEE Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1-12, May 2013.

J.J. Levandoski, D. B. Lomet, S. Sengupta, R. Stutsman,
and R. Wang. High performance transactions in
deuteronomy. In Proceedings of Biennial Conference
on Innovative Data Systems Research (CIDR), 2015.

D. Li, F. Wu, Y. Weng, Q. Yang, and C. Xie. HODS:
Hardware object deserialization inside SSD storage. In
Proc. of IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pages 157-164, 2018.

M. Najafi, M. Sadoghi, and H.-A. Jacobsen. Flexi-
ble query processor on FPGAs. Proc. VLDB Endow.,
6(12):1310-1313, Aug. 2013.

P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351-385, 1996.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick.
A case for intelligent RAM. IEEE Micro, 17(2):34-44,
Mar 1997.

E. Riedel, G. A. Gibson, and C. Faloutsos. Active stor-
age for large-scale data mining and multimedia. In Proc.
of the International Conference on Very Large Data
Bases (VLDB), pages 62-73, 1998.

S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker,
A.De, Y. Jin, Y. Liu, and S. Swanson. Willow: A user-
programmable SSD. In Proc. of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 67-80, 2014.

M. Singh and B. Leonhardi. Introduction to the IBM
Netezza warehouse appliance. In Proceedings of the
Conference of the Center for Advanced Studies on Col-
laborative Research (CASCON), pages 385-386, 2011.

E. A. Sitaridi and K. A. Ross. Optimizing select con-
ditions on GPUs. In Proceedings of the Ninth Interna-
tional Workshop on Data Management on New Hard-
ware (DaMoN), pages 4:1-4:8, 2013.

40

18th USENIX Conference on File and Storage Technologies

USENIX Association

[26]

[27]

(28]

B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer,
B. Brezzo, D. Dillenberger, and S. Asaad. Database
analytics acceleration using FPGAs. In Proceedings of
the International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 411-420,
2012.

D. Tiwari, S. S. Vazhkudai, Y. Kim, X. Ma, S. Boboila,
and P. J. Desnoyers. Reducing data movement costs us-
ing energy efficient, active computation on ssd. In Proc.
of the USENIX Conference on Power-Aware Computing
and Systems (HotPower), 2012.

A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon aurora: Design

[29]

(30]

considerations for high throughput cloud-native rela-
tional databases. In Proceedings of the ACM Interna-
tional Conference on Management of Data (SIGMOD),
pages 1041-1052, 2017.

L. Woods, Z. Istvan, and G. Alonso. Ibex: An intel-
ligent storage engine with support for advanced SQL
offloading. Proc. VLDB Endow., 7(11):963-974, July
2014.

H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili.
Kernel weaver: Automatically fusing database primi-
tives for efficient GPU computation. In proc. of Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 107-118, 2012.

USENIX Association

18th USENIX Conference on File and Storage Technologies 41

	Introduction
	Background and Motivation
	POLARDB: Basic Architecture
	POLARDB: Table Scan Pushdown
	Computational Storage Drive

	Design and Implementation
	Support Table Scan Pushdown Across the Entire Software Stack
	Enhancement to POLARDB Storage Engine
	Enhancement to PolarFS
	Enhancement to Computational Storage Driver

	Reduce Hardware Implementation Cost
	Hardware-Friendly Data Block Format
	FPGA Implementation

	Evaluation
	Experimental Setup
	Table Scan Performance Evaluation
	System-level Evaluation
	Summary

	Related Work
	Conclusions

